
ar
X

iv
:n

uc
l-

th
/0

10
50

71
 v

2 
  3

0 
Ju

l 2
00

1

Test of Nuclear Wave Functions for Pseudospin Symmetry

J.N. Ginocchio1 and A. Leviatan2

1 Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

2 Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel

(January 23, 2002)

Abstract

Using the fact that pseudospin is an approximate symmetry of the Dirac

Hamiltonian with realistic scalar and vector mean fields, we derive the wave

functions of the pseudospin partners of eigenstates of a realistic Dirac Hamil-

tonian and compare these wave functions with the wave functions of the Dirac

eigenstates.
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Pseudospin doublets were introduced more than thirty years ago into nuclear physics

to accommodate an observed near degeneracy of certain normal-parity shell-model orbitals

with non-relativistic quantum numbers (nr, `, j = ` + 1/2) and (nr − 1, ` + 2, j = `+ 3/2)

where nr, `, and j are the single-nucleon radial, orbital, and total angular momentum

quantum numbers, respectively [1,2]. The doublet structure, j = ˜̀± s̃, is expressed in

terms of a “pseudo” orbital angular momentum ˜̀ = ` + 1 coupled to a “pseudo” spin, s̃ =

1/2. This pseudospin “symmetry” has been used to explain features of deformed nuclei [3],

including superdeformation [4] and identical bands [5,6]. Although the observed reduction

in pseudo spin-orbit splitting follows from nuclear relativistic mean-fields [7], only recently

has the pseudospin “symmetry” been shown to arise from a relativistic symmetry of the

Dirac Hamiltonian [8,9].

The Dirac Hamiltonian, H, with an external scalar, VS , and vector, VV , potentials is

invariant under a SU(2) algebra for VS = VV + constant, leading to pseudospin symmetry

in nuclei [9]. The pseudospin generators, ˆ̃Sµ, which satisfy [H , ˆ̃Sµ ] = 0 in the symmetry

limit, are given by

ˆ̃Sµ =




ˆ̃sµ 0

0 ŝµ


 =



Up ŝµ Up 0

0 ŝµ


 (1)

where ŝµ = σµ/2 are the usual spin generators, σµ the Pauli matrices, and Up =
σ · p
p

is

the momentum-helicity unitary operator introduced in [7]. If, in addition, the potentials are

spherically symmetric, VS,V (r) = VS,V (r), the Dirac Hamiltonian has an additional invariant

SU(2) algebra, [H , ˆ̃Lµ ] = 0, with the pseudo-orbital angular momentum operators given by

ˆ̃Lµ =
(

ˆ̃
`µ
0

0
ˆ̀µ

)
. Here

ˆ̃
`µ = Up ˆ̀

µ Up, ˆ̀
µ = r× p, while ĵµ =

ˆ̃
`µ+ˆ̃sµ = Up ( ˆ̀

µ+ŝµ )Up = ˆ̀
µ+ŝµ.

The eigenfunctions of the Dirac Hamiltonian are also eigenfunctions of the Casimir operator

of this algebra,
ˆ̃
L · ˆ̃

L |ñr, ˜̀, j, m 〉 = ˜̀(˜̀ + 1)|ñr, ˜̀, j, m 〉, where we have used a coupled

basis, j = ˜̀+ s̃, and set h̄ = c = 1. Here j is the eigenvalue of the total angular momentum
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operator Ĵµ = ˆ̃Lµ + ˆ̃Sµ, Ĵ · Ĵ |ñr, ˜̀, j, m 〉 = j(j+ 1)|ñr, ˜̀, j, m 〉, m is the eigenvalue of Ĵz

and ñr is the pseudoradial quantum number which we define below.

In the pseudospin symmetry limit, the eigenstates of the Dirac Hamiltonian in the doublet

j = ˜̀± 1/2 are degenerate, and are connected by the pseudospin generators ˆ̃Sµ:

ˆ̃Sµ | ñr, ˜̀, ji, mi 〉 =
∑

jf ,mf

Ajf ,mf ,ji,mi | ñr, ˜̀, jf , mf 〉 . (2)

Here Ajf ,mf ,ji,mi = (−1)
1
2
−mf+˜̀

√
3(2ji+1)(2jf+1)

2

(
jf
−mf

1
µ
ji
mi

) {
1
2
jf

˜̀

1
ji
1
2

}
, where the symbols are

Wigner 3-j and 6-j symbols respectively. However, in the exact pseudospin limit, VS = −VV ,

there are no bound Dirac valence states. For nuclei to exist the pseudospin symmetry must

therefore be broken. Nevertheless, realistic mean fields involve an attractive scalar potential

and a repulsive vector potential of nearly equal magnitudes, VS ∼ −VV , and calculations

in a variety of nuclei confirm the existence of an approximate pseudospin symmetry in

the energy spectra [10–12]. Since pseudospin symmetry is broken, the pseudospin partner

produced by the raising and lowering operators acting on an eigenstate will not necessarily

be an eigenstate. The question is how different is the pseudospin partner from the eigenstate

with the same quantum numbers? As noted, energy splittings suggest that the breaking of

pseudospin symmetry is small, but is the breaking in the eigenfunctions small as well? While

previous studies have compared the lower components of the Dirac wave functions of the two

states in the doublet [10–12], it is the behaviour of the upper components which is of most

interest since they dominate the Dirac eigenstates. The relativistic pseudospin symmetry

has unique and interesting features in the following sense. First, the pseudospin generators

of Eq. (1) intertwine space and spin, and thus lead to an uncommon symmetry structure of

doublets with different radial wave functions. Second, since bound Dirac valence states do

not exist in the symmetry limit, the pseudospin properties of realistic wave functions can

not be determined by perturbation theory. These aspects motivate the present study.

To determine the pseudospin partners we need to expand the Dirac eigenfunction into a
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spherical basis,

〈 r | ñr, ˜̀, j = ˜̀+
1

2
, m 〉 =

(
gñr−1, ˜̀, j(r)[Y

(˜̀+1)(r̂)χ](j)m , ifñr , ˜̀, j(r)[Y
(˜̀)(r̂)χ](j)m

)
(3a)

〈 r | ñr, ˜̀, j = ˜̀− 1

2
, m 〉 =

(
gñr , ˜̀, j(r)[Y

(˜̀−1)(r̂)χ](j)m , ifñr , ˜̀, j(r)[Y
(˜̀)(r̂)χ](j)m

)
, (3b)

where Y (˜̀)
m˜̀

(r̂) is the spherical harmonic and χ is the spin function. From this expansion

we see that the pseudoradial quantum number, ñr, is the radial quantum number of the

lower component of the Dirac eigenfunction [13] as well as the radial quantum number of

the upper component of the eigenstate with j = ˜̀−1/2. Because the pseudospin generators

ˆ̃Sµ depend on the unit momentum vector p̂, we transform the eigenfunctions to momentum

space in order to calculate the effect of the pseudospin generators on the eigenfunctions:

〈p | ñr, ˜̀, j = ˜̀+
1

2
, m 〉 =

(
g̃ñr−1, ˜̀, j(p)[Y

(˜̀+1)(p̂)χ](j)m , if̃ñr , ˜̀, j(p)[Y
(˜̀)(p̂)χ](j)m

)
(4a)

〈p | ñr, ˜̀, j = ˜̀− 1

2
, m 〉 =

(
g̃ñr , ˜̀, j(p)[Y

(˜̀−1)(p̂)χ](j)m , if̃ñr , ˜̀, j(p)[Y
(˜̀)(p̂)χ](j)m

)
. (4b)

The corresponding spherical Bessel transforms of the radial wave functions are given by

g̃ñr−1, ˜̀, j(p) = (−i)˜̀+1

√
2

π

∫ ∞

0
j˜̀+1

(pr) gñr−1, ˜̀, j(r) r
2dr j = ˜̀+

1

2
(5a)

g̃ñr , ˜̀, j(p) = (−i)˜̀−1

√
2

π

∫ ∞

0
j

˜̀−1
(pr) gñr , ˜̀, j(r) r

2dr j = ˜̀− 1

2
(5b)

f̃ñr , ˜̀, j(p) = (−i)˜̀

√
2

π

∫ ∞

0
j

˜̀
(pr) fñr , ˜̀, j(r) r

2dr j = ˜̀± 1

2
. (5c)

We then are able to derive

ˆ̃
Sµ| ñr, ˜̀, ji, mi 〉 = Aji,mi,ji,mi | ñr, ˜̀, ji, mi 〉+ Ajf ,mf ,ji,mi | ñr, ˜̀, jf , mf 〉psp . (6)

Here the superscript psp on the second term denotes the pseudospin partner with jf 6= ji.

Even with pseudospin breaking, the pseudospin generators do not change ˜̀. In addition,

from Eq. (6) we see that the first term with jf = ji is exactly equal to the original eigenstate,

independent of the amount of pseudospin breaking. This follows from the orthogonality of
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the spherical Bessel functions, 2
π

∫∞
0 p2dp j

˜̀
(pr)j

˜̀
(px) = δ(r−x)

r2 . For the partner with jf 6= ji,

the wave function in coordinate space reads

〈 r | ñr, ˜̀, j = ˜̀+
1

2
, m 〉psp =

(
gpsp
ñ′r−1, ˜̀, j

(r)[Y (˜̀+1)(r̂)χ](j)m , ifpsp
ñr , ˜̀, j

(r)[Y (˜̀)(r̂)χ](j)m
)

(7a)

〈 r | ñr, ˜̀, j = ˜̀− 1

2
, m 〉psp =

(
gpsp
ñ′r , ˜̀, j

(r)[Y (˜̀−1)(r̂)χ](j)m , ifpsp
ñr , ˜̀, j

(r)[Y (˜̀)(r̂)χ](j)m
)

(7b)

where in general ñ′r can differ from ñr since the states with jf 6= ji in Eq. (6) are not

Dirac eigenstates. The expressions for gpsp
ñ′r , ˜̀, j−1

(r) with j = ˜̀+ 1
2

and gpsp
ñ′r−1, ˜̀, j+1

(r) with

j = ˜̀− 1
2

involve a double integral − 2
π

∫∞
0 p2dp

∫∞
0 x2dx over j

˜̀−1
(pr)j

˜̀+1
(px)gñr−1,˜̀,j(x) and

j˜̀+1
(pr)j˜̀−1

(px)gñr , ˜̀, j(x) respectively. The p-integration can be carried out and altogether

we find [14],

gpsp
ñ′r , ˜̀, j−1

(r) = gñr−1, ˜̀, j(r) − (2˜̀+ 1)r
˜̀−1

∫ ∞

r

dx

x˜̀gñr−1, ˜̀, j(x) j = ˜̀+
1

2
(8a)

gpsp
ñ′r−1, ˜̀, j+1

(r) = gñr , ˜̀, j(r) −
(2˜̀+ 1)

r ˜̀+2

∫ r

0
dx x

˜̀+1gñr , ˜̀, j(x) j = ˜̀− 1

2
(8b)

fpsp
ñr , ˜̀, j∓1

(r) = fñr , ˜̀, j(r) j = ˜̀± 1

2
(8c)

In the pseudospin limit (VS + VV = constant)

| ñr, ˜̀, j, m 〉psp = | ñr, ˜̀, j, m 〉 . (9)

Since pseudospin symmetry is slightly broken in nuclei, the pseudospin partner can differ

from the Dirac eigenstate and it is of interest to examine the deviations from the condition of

Eq. (9). Dirac bound states satisfy gñr , ˜̀, j=˜̀±1/2 ∼ r
˜̀±1 for small r, and fall off exponentially

∼ exp(−
√
M2 − E2 r), for large r [13], where M is the nucleon mass and E is the Dirac

eigenenergy. Consequently, as seen from Eq. (8a), for the Dirac eigenstate with j = ˜̀+ 1/2,

its pseudospin partner gpsp
ñ′r , ˜̀, j−1

has the expected behavior for small and large r. On the

other hand, as seen from Eq. (8b), for the Dirac eigenstate with j = ˜̀− 1/2, its pseudospin

partner gpsp
ñ′r−1, ˜̀, j+1

∼ r
˜̀−1 for small r, and falls off as a power law r−(˜̀+2) for large r. As such

it has a behavior which is very different from that of a Dirac bound state with j = ˜̀+ 1/2.
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This asymmetry in the behavior of the pseudospin partners of j = ˜̀+ 1/2 or j = ˜̀− 1/2

Dirac eigenstates, is evident in the analysis of nuclear wave functions presented below. These

realistic wave functions were obtained in a relativistic point coupling model, and we refer

the reader to [10] for details on the parameterization of the potentials, and the data that

has been used to fix it.

We first examine Dirac eigenstates with j = ˜̀+ 1/2 and wave functions as in Eq. (3a).

Their partners with j ′ = j − 1 are obtained from Eqs. (8a,c). As an example, we consider

the realistic relativistic mean field Dirac eigenstates 0d3/2, 1d3/2 (˜̀ = 1, j = 3/2) for

208Pb [10]. In Fig. 1 we compare the spatial wave functions of these pseudospin partners,

[P (0d3/2)]s1/2, [P (1d3/2)]s1/2 with the eigenstates, 1s1/2, 2s1/2. (The symbol P means the

s1/2 partner of the 0d3/2 or 1d3/2 eigenstates). The lower components agree very well, which

was noted previously [10–12], except for some disagreement on the surface. For the upper

components the agreement is not as good in the magnitude but the shapes agree well, with

the number of radial nodes being the same [ñ′r = ñr in Eq. (7a)]. The agreement improves

as the radial quantum number increases, which is consistent with the observed decrease in

the energy splitting between the doublets [8,10]. As another example in the same category

(j = ˜̀ + 1/2), we compare in Fig. 2 the [P (0h9/2)]f7/2 partner of the 0h9/2 eigenstate

(˜̀ = 4, j = 9/2) with the 1f7/2 eigenstate. The radial wave functions have the same number

of radial quantum numbers and, again, the lower components agree better.

Next we examine the other category of Dirac eigenstates with j = ˜̀− 1/2 and wave

functions as in Eq. (3b). Their partners with j ′ = j + 1 are obtained from Eqs. (8b,c). As

an example, we consider the realistic relativistic mean field eigenstates 0s1/2, 1s1/2, 2s1/2

(˜̀ = 1, j = 1/2) for 208Pb [10]. The 0s1/2 eigenstate will have a partner which we de-

note by [P (0s1/2)]d3/2, but there is no d3/2 eigenstate at approximately the same energy

as the 0s1/2 eigenstate, so there is no eigenfunction to compare to. On the other hand,
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the 1s1/2 and 2s1/2 eigenstates are almost degenerate with the 0d3/2 and 1d3/2 eigenstates

respectively. In Fig. 3 we compare the spatial wave functions of the pseudospin partners

[P (1s1/2)]d3/2, [P (2s1/2)]d3/2 with the respective 0d3/2, 1d3/2 eigenstates. These partners

agree well with the eigenfunctions in the interior but not on the nuclear surface. In fact, the

partners do not have the same number of nodes and do not fall off exponentially but inversely

as the cubic power, r−3, in agreement with the r−(˜̀+2) behavior reported in Eq. (8b).

The Dirac eigenstates with ñr = 0 and j = ˜̀− 1/2 are special, because no eigenstates

exist with the quantum numbers of their partners, ñr = 0 and j = ˜̀+ 1/2. An example

is given in Fig. 3a,b for ˜̀ = 1, j = 1/2. For heavy nuclei these states with large j are

the “intruder” states. Before the SU(2) algebra of pseudospin was discovered, these states

were discarded from the pseudospin scheme. However, that is clearly not a valid procedure

if pseudospin symmetry is a symmetry of the Dirac Hamiltonian. As another example, we

show in Fig. 4a,b the radial wavefunction of the [P (0f7/2)]h9/2 partner of the 0f7/2 intruder

state (˜̀ = 4, j = 7/2). There is no quasi-degenerate h9/2 eigenstate to compare to. The

upper component has the r−6 falloff alluded to above. Although both components have zero

radial quantum number, they do not compare well with the 0h9/2 eigenstate shown in Fig.

4c,d. In Fig. 4c,d we show also the radial wavefunction of the [P (1f7/2)]h9/2 partner of the

1f7/2 state (˜̀ = 4, j = 7/2) and compare it to the 0h9/2 eigenstate. The upper component

has again the r−6 falloff and therefore does not compare well on the surface. Also the number

of radial quantum numbers differ. The lower components agree better.

In summary, we have shown that the radial wave functions of the upper components of

the j = ˜̀− 1/2 pseudospin partner of the eigenstate with j = ˜̀+ 1/2 is similar in shape

to the j = ˜̀− 1/2 eigenstate but there is a difference in magnitude. However, the ñr 6= 0

radial wave functions of the upper components of the j = ˜̀+ 1/2 pseudospin partner of the

eigenstate with j = ˜̀−1/2 is not similar in shape to the j = ˜̀+1/2 eigenstate. In fact these
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wave functions approach r
˜̀−1 rather than r

˜̀+1 for r small, do not have the same number of

radial nodes as the eigenstates, and do not fall off exponentially as do the eigenstates, but

rather fall off as r−(˜̀+2). Furthermore, the pseudospin partners of the “intruder” eigenstates,

ñr = 0, also fall off as as r−(˜̀+2). We have confirmed that the radial wave functions of the

lower components of the pseudospin partners of eigenstates of the Dirac Hamiltonian for

j = ˜̀± 1/2 are very similar to the eigenstates with the same quantum numbers except for

some differences on the surface.

This research was supported in part by the United States Department of Energy under

contract W-7405-ENG-36 and in part by the U.S.-Israel Binational Science Foundation.
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FIGURES

Figure 1. a) The upper component [g(r)] and b) the lower component [f(r)] in (Fermi)−3/2

of the [P (0d3/2)]s1/2 partner of the 0d3/2 eigenstate compared to the 1s1/2 eigenstate. c) The

upper component and d) the lower component of the [P (1d3/2)]s1/2 partner of the 1d3/2

eigenstate compared to the 2s1/2 eigenstate for 208Pb [10].

Figure 2. a) The upper component [g(r)] and b) the lower component [f(r)] in (Fermi)−3/2

of the [P (0h9/2)]f7/2 partner of the 0h9/2 eigenstate compared to the 1f7/2 eigenstate for

208Pb [10].

Figure 3. a) The upper component [g(r)] and b) the lower component [f(r)] in (Fermi)−3/2

of the [P (0s1/2)]d3/2 partner of the 0s1/2 eigenstate. c) The upper component and d) the

lower component of the [P (1s1/2)]d3/2 partner of the 1s1/2 eigenstate compared to the 0d3/2

eigenstate. e) The upper component and f) the lower component of the [P (2s1/2)]d3/2 partner

of the 2s1/2 eigenstate compared to the 1d3/2 eigenstate for 208Pb [10].

Figure 4. a) The upper component [g(r)] and b) the lower component [f(r)] in (Fermi)−3/2

of the [P (0f7/2)]h9/2 partner of the 0f7/2 eigenstate. c) The upper component and d) the

lower component of the [P (1f7/2)]h9/2 partner of the 1f7/2 eigenstate compared to the 0h9/2

eigenstate for 208Pb [10].
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